Definitions and key facts for section 3.3

For any $n \times n$ matrix and \mathbf{b} in \mathbb{R}^{n}, let $A_{j}(\mathbf{b})$ be the matrix obtained by replacing the j th of A with \mathbf{b}.

$$
A_{j}(\mathbf{b})=\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{j-1} & \mathbf{b} & \mathbf{a}_{j+1} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

Fact: Cramer's rule

If A is an invertible $n \times n$ matrix, then for any \mathbf{b} in \mathbb{R}^{n}, the unique solution \mathbf{x} of $A \mathbf{x}=\mathbf{b}$ has entries given by

$$
x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A} \quad \text { for } i=1,2, \ldots, n
$$

From this we can obtain a formula for the inverse of A. As it involves determinants, it is wildly impractical for calculations but it is a powerful tool to have for theoretical work. Using Cramer's rule, one can see that the (i, j) entry of A^{-1} is (j, i)-cofactor $C_{j i}$ divided by $\operatorname{det} A$:

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right]
$$

Fact: The geometry of the determinant If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\operatorname{det} A|$. If A is a 3×3 matrix, the volume of the parallelopiped determined by the columns of A is $|\operatorname{det} A|$.
Fact: The determinant and linear transformations If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation with standard matrix A and S is a parallelogram in \mathbb{R}^{2}, then

$$
\{\text { area of } T(S)\}=|\operatorname{det} A| \cdot\{\text { area of } S\} .
$$

Similarly, if $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with standard matrix A and S is a parallelepiped in \mathbb{R}^{3}, then

$$
\{\text { volume of } T(S)\}=|\operatorname{det} A| \cdot\{\text { volume of } S\}
$$

In fact, this can be extended to any region S in $\mathbb{R}^{2}\left(\mathbb{R}^{3}\right)$ with finite area (volume).

